Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119714, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056328

RESUMEN

Evapotranspiration (ETo) is a complex and non-linear hydrological process with a significant impact on efficient water resource planning and long-term management. The Penman-Monteith (PM) equation method, developed by the Food and Agriculture Organization of the United Nations (FAO), represents an advancement over earlier approaches for estimating ETo. Eto though reliable, faces limitations due to the requirement for climatological data not always available at specific locations. To address this, researchers have explored soft computing (SC) models as alternatives to conventional methods, known for their exceptional accuracy across disciplines. This critical review aims to enhance understanding of cutting-edge SC frameworks for ETo estimation, highlighting advancements in evolutionary models, hybrid and ensemble approaches, and optimization strategies. Recent applications of SC in various climatic zones in Bangladesh are evaluated, with the order of preference being ANFIS > Bi-LSTM > RT > DENFIS > SVR-PSOGWO > PSO-HFS due to their consistently high accuracy (RMSE and R2). This review introduces a benchmark for incorporating evolutionary computation algorithms (EC) into ETo modeling. Each subsection addresses the strengths and weaknesses of known SC models, offering valuable insights. The review serves as a valuable resource for experienced water resource engineers and hydrologists, both domestically and internationally, providing comprehensive SC modeling studies for ETo forecasting. Furthermore, it provides an improved water resources monitoring and management plans.


Asunto(s)
Algoritmos , Computación Suave , Bangladesh , Hidrología , Agricultura
2.
J Hazard Mater ; 454: 131522, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146332

RESUMEN

Microplastic (MP) pollution waste is a global macro problem, and research on MP contamination has been done in marine, freshwater, and terrestrial ecosystems. Preventing MP pollution from hurting them is essential to maintaining coral reefs' ecological and economic benefits. However, the public and scientific communities must pay more attention to MP research on the coral reef regions' distribution, effects, mechanisms, and policy evaluations. Therefore, this review summarizes the global MP distribution and source within the coral reefs. Current knowledge extends the impacts of MP on coral reefs, existing policy, and further recommendations to mitigate MPs contamination on corals are critically analyzed. Furthermore, mechanisms of MP on coral and human health are also highlighted to pinpoint research gaps and potential future studies. Given the escalating plastic usage and the prevalence of coral bleaching globally, there is a pressing need to prioritize research efforts on marine MPs that concentrate on critical coral reef areas. Such investigations should encompass an extensive and crucial understanding of the distribution, destiny, and effects of the MPs on human and coral health and the potential hazards of those MPs from an ecological viewpoint.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Humanos , Ecosistema , Microplásticos/toxicidad , Plásticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...